Data Analysis of Strip-Line Board for TOF-PET

Abhinay Prem^{1,2}

¹University of Southern California Los Angeles, CA

²Fermi National Accelarator Laboratory Batavia, IL

 8^{th} August 2012

Overview

- ▶ Brief Introduction to PET Physics
- ► Experimental Setup
- ▶ Data Analysis
- ► Conclusions
- ► References
- Acknowledgements

First, Some Biology

- ► Cancer cells have higher than average rate of glucose metabolism.
- ► Certain radiotracers, such as ¹⁸F-fluoro-deoxy-glucose (¹⁸F-FDG) follow metabolic path similar to glucose.
- ▶ Unlike glucose, tracers don't metabolise to CO₂ and water but remain trapped in tissue.
- ▶ Higher density of tracers near cancerous sites.

Detection

- ▶ Positron Emission Tomography (PET) is a radiotracer imaging technique.
- ▶ Patient is injected with radionuclide (¹⁸F compounds common in oncology).
- ▶ Trapped radio-tracers decay ($t_{1/2}$ for ¹⁸F = 110 mins).

$$p \to n + e^+ + \nu_e \tag{1}$$

▶ e⁺ annihilates with e⁻ after travelling ~ 1 mm, producing a pair of 511 keV γ .

Coincidences

Figure: Coincidence Detection in PET

- When the photo-detectors placed around patient detect γ , each of them produces a timed pulse.
- Pulses fed into coincidence circuitry and if two pulses close enough, a coincidence event is recorded.
- ▶ Constrains annihilation event along a line.
- \blacktriangleright Spatial resolution of \sim 10cm attainable with PET technology.

Limitations of Conventional PET

- ▶ In conventional PET, location of individual events is constrained along a line, the Line of Resolution (LOR), and not a point.
- Not all photons pass through undeviated scattering, random coincidences, multiple coincidences.
 - Scattered coincidences γ undergoes Compton scattering before detection. Event assigned to wrong LOR. Adds statistical noise to signal.
 - Random coincidences γ not from same event reach detectors within coincidence window. Also add statistical noise.
 - ▶ Multiple coincidences More than two γ detected within coincidence window. Causes event mis-positioning.

Health Effects

- $ightharpoonup \sim 15~mSv$ is allowed level of radiation exposure for radiation workers at Fermilabs.
- ▶ For adults, exposure from single PET scan $\sim 8 \, mSv$.
- ▶ From PET+CT $\sim 30 \ mSv$.
- ▶ Radiation effects cumulative in nature.
- ▶ Probability of developing oncological complications from a single PET scan on order of 0.1%
- ▶ Use of PET as a diagnostic tool limited.

Advantages of Time of Flight (TOF) PET

- Can increase resolution by accurately measuring the arrival time of the two 511 keV photons.
- This constrains the location of the positron to a point rather than a line.
- If the scanner has a radius x, event is displaced by Δx , speed of light is c, arrival time of photon 1 is T_1 and photon 2 is T_2 , Δt is coincidence timing resolution, Δx is resulting spatial resolution, then:

$$T_1 = \frac{x - \Delta x}{c}, T_2 = \frac{x + \Delta x}{c} \tag{2}$$

$$\implies \Delta t = T_2 - T_1 = \frac{2 \times \Delta x}{c} \tag{3}$$

$$\implies \Delta x = \frac{\Delta t \times c}{2} \tag{4}$$

For Δt= 200ps, spatial resolution of ~ 3cm.

Figure: Coincidence Detection in PET

Basic Layout

- ▶ Radioactive source ²²Na
- ▶ Scintillating Crystals $3 \times 3 \times 15~mm^3$ LYSO crystals doped with Ce and wrapped in Teflon to increase light yield.
- ▶ Silicon Photo Multipliers (SiPMs) Need less voltage (\sim 30-70V) than PMTs (\sim 1000V), compact, insensitive to magnetic fields.
- Electronics amplifiers, discriminator, trigger circuit, signal processing circuit.

Layout

Components

....

PET-TOF Analysis

Strip-Line Board

- In a detector, there will be multiple crystals, each with a corresponding SiPM which needs to be read out.
- ▶ So 8 crystals ⇒ 8 SiPMs ⇒ 8 readout channels. This is cost ineffective.
- The Strip-Line board is a solution to this. Need only 2 readout channels.

Strip-Line Board

Strip-Line Board: How it works

▶ If T_1 is propagation time for Channel 0 pulse, T_2 is propagation time for Channel 1 pulse, c is speed of signal propagation along strip-line, Δt is coincidence timing resolution, Δx is resulting spatial resolution, then:

$$T_1 = \frac{x - \Delta x}{c}, T_2 = \frac{x + \Delta x}{c} \tag{5}$$

$$\implies \Delta x = \frac{\Delta t \times c}{2} \tag{6}$$

- ▶ If # of crystals hit simultaneously low and Δt small enough, then can determine which SiPM was hit. Cost effective solution.
- Goal is minimizing Δt

Figure: Determining posⁿ of activated SiPM

Strip-Line Data

Figure: Strip Line Readout

- For individual events, pulse shape not distorted as it propagates along strip-line.
- Pulse shapes only linear in small region.
- \blacktriangleright Linear fit procedure can use \sim 2-35% part of leading edge, limiting the timing resolution.

Energy Distribution

Figure: Energy Distribution

- To measure incident photon energy:
 - Integrate the pulse shape.
 - Normalize the photopeak to 511 keV by introducing calibration constants - one scale factor per channel.

Fitting Procedure

Figure: Channel 0

Figure: Channel 1

- Strip-Line read out from two ends: Ch 0 and Ch 1
- Pulse shapes readout from diff. channels for single events differ only by horizontal movement.
- Data driven fitting procedure.
- No assumptions made about the pulse shape.
- ▶ Utilize ~ 2-60% of leading edge for fitting.

Fitting Procedure (contd.)

Figure: Fit Ch 1 Readout with Ch 0 Shape

Figure: Zoomed In

- Normalize both pulses to $V_{max} = 1$.
- Fit Ch 0 using a local parabolic interpolation.
- Extract this function and use to fit the readout from Ch 1.
- Horizontal shift gives us the timing difference across strip-line.

$$\Delta T = T_2 - T_1 \tag{7}$$

- ▶ Timing resolution, Δt , is the jitter in the horizontal offset ΔT
- \Delta t comes directly from the fit.

Results: Timing Resolution

Figure: Δt (Channels)

Figure: Δt (Channels)

- ▶ These are histograms of ΔT from two different SiPMs, where ΔT is given by the horizontal offset.
- Only events from the photopeak are used in determining the timing resolution.
- ▶ For Figure 1: $\sigma = 0.06364$ (in channels) \implies FWHM = 30 ps. ▶ For Figure 2: $\sigma = 0.05896$ (in channels) \implies FWHM = 28 ps.
- FWHM gives Δt .

Results

- StripLine with 8 SiPM's separated by 5mm
- Resolution (FWHM) along strip line(in ps):
- ▶ SiPM #1 : 33 ps
- ► SiPM #2 : 30 ps
- ► SiPM #3 : 28 ps
- ► SiPM #4 : 27 ps
- ► SiPM #7: 46 ps
- ► SiPM #8: 33 ps
- BI W #0 . 33 ps
- ► SiPMs #5 & #6 non-functional.
- ▶ Across the stripline (length = 35mm), measure speed of pulse $\sim 0.52c$
- Using eqⁿ (6), this translates to a spatial resolution of:
 - $\sim 2.1 \text{ mm (FWHM)}$
 - $\sim 1 \text{ mm } (\sigma)$
- Since SiPM's separated by 5mm, this resolution allows us to determine with good accuracy which crystal was hit.

Figure: Δt Peak position (channels) vs SiPm position (in cm)

Conclusions

- Strip-Line boards provide cost effective method of identifying which crystals detect γ
- ➤ Timing Resolution of 30ps reproducible using described fitting procedure.
- ▶ Corresponds to spatial resolution of $\sim 2.1 \text{ mm}$ (FWHM).
- ▶ For SiPM pitch of 5mm, this resolution allows us to identify the SiPM on the Strip-Line at a level of $\sigma \sim +/-2$ mm.

References

- ▶ Moses, William W. 'Recent Advances and Future Advances in Time-of-Flight PET'. Nucl Instrum Methods Phys Res A. 2007 October 1. 580(2): 919924.
- http://depts.washington.edu/nucmed/IRL/pet_intro/ index.html

Acknowledgements

- ▶ Pavel Murat
- ► Anatoly Ronzhin
- ► Eric Ramberg
- ► Roger Dixon
- ► Carol Angarola